EARTH REVEALED VIDEO #5 BIRTH OF A THEORY

DONOT WRITE IN THIS PACKET

PLEASE LEAVE ON DESK

DIRECTIONS: GO TO THE FOLLOWING WEBSITE AND CLICK ON THE VIDEO YOU WANT TO WATCH https://www.learner.org/series/earth-revealed/

PROGRAM 5: THE BIRTH OF A THEORY VIDEO

0:00-2:20	Remar	ks by series host			
In the 1960s,	earth scie	entists developed the theo	ory of (#01)	. This theo	ory is built on the premise
that Earth's	(#02)	consists of "plates" whi	ch slide around	on a partially m	nolten mantle layer, and
explains a wid	de variety	of geologic processes, re	ocks, and geolo	gic structures.	
2:21 -3:51		iews with Robert Dougla nia Institute of Technol	,	of Southern Ca	lifornia; Jason Saleeby
(#03)	obs	servations of geographic r	elationships an	d conclusion tha	at continents must have
moved are de	scribed.	These ideas were not acce	epted at the time	e, but became th	e foundation for a
revolution of	geology.	Wegener's matching geol	logic patterns (p	plant fossils, clir	nate zones, glaciation,
rock formatio	ons, and c	ontacts) across major oce	an basins is use	ed to demonstrat	e (# 04)
particularly o	f the form	ner Gondwana. Included i	is a collage of in	mages: Earth in	space, old maps of the
Atlantic Ocea	an coastli	nes, and a portrait of Alfr	ed Wegener.		
(A) Alfre	ed Weger	ner's (B) continental d	rift (C) Litho	osphere (D) p	late tectonics.
3:52-5:16 A graphic glo		ion • Images nstrates some of the inter-	esting matches	and linkages (fo	ossils, mountain ranges,
rock types) be	etween S	outh America and #05	which show th	nat they were on	ce joined. Also included
are old maps	showing	how the continents might	have fit togeth	er at one time ar	nd then moved into their
current positi	ons.				
5:17-7:01		iews with Tanya Atwate Ernst, Stanford Universi	•	f California, Sa	nnta Barbara;
The importar	nce of We	egener's contributions and	I his use of (#	o6) are describ	bed, along with how
geologists fro	om the so	outhern continents accepte	ed Wegener's id	eas earlier than	those who worked in
(# 07) and	North Ar	nerica. The main problem	with Wegener	(# 08)	theory was that it
required that	continen	tal crust "plow through" o	ocean crust, yet	the driving forc	es that Wegener invoked
to explain thi	is process	s are too small. Evidence	in the rocks doe	es not support it	either. Because of these
weaknesses,	Wegener	's theory was initially ((#09)		
(A) Africa	(B) continental drift	(C) Europe	(D) evidence	(E) rejected

.

DIRECTIONS: GO TO THE FOLLOWING WEBSITE AND CLICK ON THE VIDEO YOU WANT TO WATCH https://www.learner.org/series/earth-revealed/

7:02-13:15 Interview with Tanya Atwater (with images and animation)

Scientists are careful and inherently conservative. They require evidence to support new ideas.						
(#10) from World War II was key to understanding geology of the ocean basins and yielded						
evidence used to understand the process of (#11) . Included are old photos of WWII ships,						
the fathometer, and maps of the California coast and Pacific Ocean showing the (#12) and offshore						
bathymetry. A cross-section of seamounts shows how they form and are subsequently submerged as a						
result of sea-floor spreading. An animated model of and mantle showing how magma movement is						
thought to affect sea-floor spreading and (#13) is shown. It includes a rotating model of						
Earth showing all major plates and a (#14)						
A.) Technology (B) sea-floor spreading (C) seamounts (D) subduction zone (E) plate movement						
13:16-16:14 Interview with Scott Bogue, Occidental College (with images and animation)						
(#15) in rocks and how it is used to understand Earth's (#16) in the past is						
explained. Samples of the ocean floor provided evidence for many (#17) of Earth's						
magnetic field in the geologic past. Discovery by Fred Vine and Drummond Matthews of the						
symmetrically striped pattern of magnetic anomalies associated with mid-ocean ridges provided crucial						
evidence of both magnetic reversals and the process of sea-floor spreading.						
16:15-16:53 Animation • Images						
An Earth model shows a (#18) spreading center, new crusts forming at the ridge, plate						
movement, transform faults, seamounts, and an alternating color pattern mimicking the magnetic						
anomaly pattern.						
(A) Paleomagnetism (B) magnetic reversals (C) magnetic field (D) mid-oceanic ridge						

DIRECTIONS: GO TO THE FOLLOWING WEBSITE AND CLICK ON THE VIDEO YOU WANT TO WATCH https://www.learner.org/series/earth-revealed/